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1 Introduction

Acoustic communications is an important part of underwater research. The mass amount
of data collected by sub-sea devices can be made available to the scientific community in
real-time with the utilization of acoustic modems.

Sensor data collected by the sub-sea devices, including but not limited to pictures, depth,
currents, sonar images, traditionally are stored in the observation post until the end of the
mission, By employing a high speed acoustic link between the observation post and a
gateway, which is connected to the command and control station through a radio link, we
can reach the data in real-time.

Currently, off-the-shelf modems are employed for these applications. These modems are
limited in their capabilities and are not flexible enough to experiment with different
communication schemes. Especially in the case of underwater acoustic networks, it is
almost impossible to utilize off-the-shelf modems.

We are developing an acoustic modem that will be flexible enough to test different
communication algorithms including networking protocols, Due to its highly flexible
structure, we will call this modem &e Reconfligurable Modem. The main purpose of the
Reconfigurable Modem will be to bring simulation and development environments
together. By this way, algorithms developed by researchers and tested using simulation
can be rapidly prototyped and proved in real world scenarios, Algorithm that are found to
be effective can be implemented in hardw'are with more stringent requirements, such as
low power consumption for extended operation time and low production cost.

The development of the modem is carried out using Mathworks tools, such as Matlab,
Simulink, and Real-Time Workshop. Matlab has been the choice of the scientific
community for developing new algorithms. We will create a common simulation
environment using Matlab and Simulink. Once the algorithms are tested using the
simulation environment, we will generate real-time code using Real-Time Workshop.
The generated real-time code can be run on a digital signal processor  DSP!. Once the
algorithm is transferred into a DSP, we can test it in real world.

In the Simulink environment, algorithms ate defined using functional blocks. We can
exploit this property and design a highly modular acoustic modem. A researcher can only
focus on one of the functional block, say the equalizer, and develop a new algoriOun. By
simply changing the equalizer block in the reconfligurable modem, we can test this new
algorithm and generate real-time code.

The reconfigurable modem hardware has four major parts; the DSP board, analog-digital
interface, power amplifier, and transducer. The DSP board contains a Texas Instruments
TMS320C6713 chip. The analog-digital interface contains four analog-to-digital and
digital-analog  AD/DA! channels, which will enable us to develop multi-input-multi-



output  MIMO! modems. The power amplifier board is able to drive several acoustic
transducers with minimal engineering effort,

2 Reconfigurable Modem Software
We developed the Reconfigurable Modem  rModem! software using the Simulink
platform by Mathworks. Simulink provides a simulation environment where the rModem
can be modeled in a block diagram fashion. Each block defines a separate task of the
rModem, such as filtering, synchronization, and equalization, The rModem functional
block can be tested by running Simulink simulation. In addition to simulations, using the
Real-Time Workshop tool, we can convert the Simulink block diagram into real-time C
code. This generated code can be compiled and downloaded to our hardware using Code
Composer Studio  Texas Instruments Development Environment!.

Figure 1 shows the highest level block diagram of the rModem. We followed the ISO
layered network definitions [I]. This version of the rModem software defines the
Pyhsical Layer  or Layer 1!, the Transport Layer  Layer 4!, and the UART interface for
serial communications with the modem. In the future versions, we will include the
Network Layer  Layer 3! and the Data Link Control Layer  Layer 2!. Each layer is
connected to its higher level through two queues  or FIFO buffers!, one for downstream
communications and one for upstream communications. The rest of this section explains
the individual blocks in more detail.

Figure 1 The highest level biock diagram for rModem defined in Simuiink.

Frame, packet, frequency, sampling rate,



2.1 Some Simulink Requirements
Simulink is originally intended to be used with dynamic control systems. It can resolve
loops in a system as long as there is a delay block in the loop. Therefore, you will find
some delay blocks in our implementation. This becomes a problem especially in case of
queues. In a conventional communication system, if a process pushes an element into a
queue, the next process can pop that element out of the queue even though they executed
in the same clock tick. However, in Simulink the next process first has to send a pop
signal to the queue. And this signal can only be processes by the queue in the next clock
tick, which causes an unnecessary delay in the system.

In the upcoming versions, we are planning to include the queues into the state machine
definitions. In other words, each state machine will have a block of memory to implement
an input queue. By this way, we can access the queue multiple times in one time instance.

2.2 Physical Layer
Physical layer converts data bits into acoustic signals before transmitting them through
the underwater channel and converts received acoustic signals into data bits. The block
diagram of the physical layer is given in Figure 2.



Figure 2 Physical layer  Layer I! of rModem consists of the transmitter, the receiver, layer I controllers,
and AD/DA converters.

2.2.1 Layer 1 Transmitter Controller
Physical layer transmitter controller  Layer l Xmit Ctrl! handles the creation of acoustic
packets. The state diagram for the transmit controller is given in Figure 3. When the
controller detects that the Layer l downstream queue is not empty, it generates a signal to
pop the packet from the queue. Due to the implementation of the queue, the packet
appears at the input port of the controller with one unit delay  or at the next clock tick!,



Figure 3 Layer 1 transmitter controller controls the sequence of events to create acoutic packets.

When the controller receives the packet from the queue, it checks if the receiver is on. If
there is no reception going on, it turns on the transmitter and generates a preamble. The
preamble is a pulse used to detect and synchronize to an acoustic packet at the receiver.
The receiver also uses the preamble to estimate the Doppler shift presented by the
channel, The preamble occupies one frame duration together with the silence period. We
inserted a silence period to ensure that the multipath arrivals due to the preamble will die
before the start of the data signals.

After the preamble, the controller generates a training sequence, whose length depends on
the modulation constellation size. Training symbols occupy one frame duration. Then, the
controller passes all the data bits to the transmitter and enters a loop to wait for all the bits
to be sent out to the channel. The loop size is determined by the framesPerPacket
parameter. The controller expects enough number of bits from the upper layer to fill
create one packet.

Upon completion of the transmission of the packet, the controller returns to the Idle state.
Returning to the Idle state without checking for a new packet in the queue assures that
there will always be one frame duration between consecutive packets,



2.2.2 Transmitter

The transmitter handles the actual conversion of the bits into acoustic signals. Figure 4
and Figure 5 show the block diagrams for the transmitter. Figure 5 represents the block
labeled Xmit in the previous figure. The data bits are first passed through the
convolutional encoder and encoded according to the codeNUm provided by the
transmitter controller. The codeNUm may also indicate no coding, in which case the data
bits pass through the encoder block without any inodification. The encoded bits are then
interleaved and passed to a circular buffer. The circular buffer outputs one frame duration
of bits every tick. These bits are passed through an interpolation filter. Finally, the signals
are carrier modulated and sent to the D/A converter.

Figure 4 The modulated symbols are passed through an interpolation fiiter and carrier modulated before
sent to the channel.

Luyer1 Hum Daoadet1

Figure 5 The transmitter encodes, interleaves, and modulates the data bits.

2.2.3 Physical Layer Receiver Controller
The physical layer receiver controller handles the operation of the acoustic receivers.
Figure 6 shows the state machine for the receiver controller. We keep the receiver in the
PreambleSearch state as long as the transmitter is not turned on. If the transmitter is



turned on by the transmitter controller, then the receiver switches to the Icfle state.  Note
that the transmitter can only be turned on if the receiver is in the PreambleSearch
state.!

Figure 6 State machine of the physical layer receiver controller handles the operations of the acoustic
receiver.

%hen the transmitter is turned off, the receiver controller switches to the
PreambleSearch state. In this state, the samples received from the A/D converter are
correlated with the known preamble. If the controller detects a preamble, it turns on the
receiver, initializes the receiver, and enters a loop of length  framesPerPackeN1! to
receive the packet. Upon completion of the reception of the packet, the controller turns
off the receiver and returns to the PreambleSearch state.

The preamble detector returns the location of the preamble  preamblel ocation! in the
last received frame of samples. The controller uses this information to compute the
starting point of the training symbols  syncTime!. The syncTime reported by the
controller is a multiple of the adaptive filters oversampling rate
 adapFilOverSampRate!. By this way, we make sure that we will always sample at the
right instance without the need of a state variable to remember the number of the location
of the last sample.



The receiver controller also provides the training bits used by the adaptive equalizer,

The current version of the receiver controller requires the user to set the modulation type
of the receiver signal, In the future versions, we are planning to add a header to each
packet that will carry the modulation type information of the following packet. The
controller will initialize the receiver according to this information.

2.2.4 Physical Layer Receiver
The acoustic receiver consists of two major parts: the Preamble Process block and the
Demodulator block  Figure 7!. The samples received from the A/D converter are first
down converted to baseband. The baseband samples are then passed through a decimator
filter, The output of the decimator filter is fed to both the Preamble Process block and
the Demodulator block.

Figure 7 Block diagram of the acoustic receiver.

In the PreambleSearch state, the receiver controller enables the Preamble Process
block, which is shown in Figure 8 The preamble search block correlates the received
samples with the known preamble., The received samples are further downsampled
before correlating with the known preamble to reduce the computational cost, This block
is also responsible for providing an estimate of the Doppler shift present in the received
signal. If the correlation value exceeds a threshold, this block issues a detection signal
together with the position of the preamble and the Doppler shift estimate.



Figure S The preamble search block correlates the received samples with the known preamble.

The Demodulator block is shown in Figure 9. Following the detection of a preamble, the
controller disables the PIeambfe Processor block and enables the Demodulator block.
The received samples are first passed through a Doppler compensator, synchronizer, and
decimator. The output of the Sync Ooppfer Decim block is fed into the equalizer. The
equalized symbols are demapped into soft bit values. The Deinterleaver block has an
internal buffer where the soft bits of a data packet are buffered until the whole packet is
received. Then the soft bits are deinterleaved and decoded in the Viterbi Decoder block.

By placing the buffer just before the deinterleaver, we can distribute the computationally
intensive equalization process over multiple frame durations and timing requirements for
real-time operation. Due to the presence of a deinterleaver, we cannot employ the same
approach to the Viterbi decoder,

Figure 9 The demodulator block converts the received signals into a bit stream,



2.3 Transport Layer
The transport layer is responsible for dividing the data to be transmitted into packets and
assembling the received packets. We modeled the transport layer with two parallel state
machines see Figure 10!: Transport Xmt Ctrland Transport Rcv Ctrl.

Figure t0 The transport layer has two parallel state machines.

The Transport Xmt Ctrl state machine represents the controller for the transmitter side.
The details of the state machine are shown in Figure 11. When the controller detects a
packet in the queue, it issues a popXmtQ signal and initializes a session. The
initialization involves assigning a session number, determining the number of bits in a
Layer 3 packet based on the physical layer setting. The physical layer settings that affect
the Layer 3 packet size are the modulation and coding types.

Once the packet is received from the queue, the controller determines the number of
Layer 3 packets needed to carry the information. Then the controller enters a loop of
length xmtNumPackets. At each execution of the loop, the controller creates a new
Layer 3 packet, enters the header information, and copies the payload bits. The created
Layer 3 packets are pushed into the lower layer's queue,

Upon completion of the loop, the controller checks for a new packet in its queue. If there
is a new packet, it issues a popXmtQ signal and initializes a new session. Otherwise, the
controller returns to the Idle state.

The current version of the transport layer transmitter controller does not check for queue
overflows. Therefore, if the rate of new data arrival to the transport layer is more then the
rate of the lower layers, packets may be lost. For now, it is the upper layers'
responsibility to ensure that no queue overflow will occur.

11
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Figure 11 The details of the state machine for the transport [ayer transtnitter controller.

The Transport Rcv Ctrl state rnachine represents the controller for the transmitter side.
The details of the state machine are shown in Figure 12. The controller waits in the Idle
state until a packet appears in its queue. Upon detection of the packet, the controller
issues a popRcvQ signal and determines the expected payload size of the received Layer
3 packet based on the current physical layer settings, When the controller receives the
packet from the queue, it first checks the CRC and determines if the packet is valid. If it
is a valid packet, then the controller reads the header to determine the session ntUnber,
number of packets in this session, packet number, and the size of the data in this packet.
If this is the first packet of a session and there is no open session, the controller starts a
new session, If there is an open session, the packet is ignored, The current version of the
transport layer can handle one session at a time. If the packet is accepted by the transport
layer, it is placed into the reassembly buffer.

17



If the session requires more packets, the controller checks &e queue for a new packet. If
there is a new packet, then the process is repeated for the new packet. Otherwise, the
controller sets a timer and waits for a new packet from the queue. If the timer expires
before the arrival of a packet, then the session is closed before completion. If all the
packets of a session are received successfully, then the reassembled Layer 4 packet is
sent to the higher level.

This version of the transport layer receiver uses the Layer 3 payload length to determine
how to reassemble the received packets. However, this may cause a problem if the
physical layer receiver settings are changed before all the packets of a session are
processed or if the packets are transmitted using different physical layer settings. We will
address this possible source of problem in the future versions,
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Figure 12 The state machine for the transport layer receiver controller.

2.4 UART Receiver Controller

The UART receiver controller parses the information received from the UART  or the
serial port!. The information received from the UART can be commands or data. In the
ASCII mode, the UART receiver handler assumes that the received information is 8-bit
ASCII command, These commands can be used to set the receiver type, transmitter type,
and to send data. We also implemented special commands to debug or send large canned
files,



The commands implemented for the preliminary version of the rModem resemble AT-
commands. So fm, we implemented four commands:

1! ATMd: set the physical layer transmitter mode. This command sends an integer  d! to
the rModem to select the modulation and coding type for the transmitter.

2! ATRd: set the physical layer receiver mode. This command sends an integer  d! to
the rModem to select the modulation and coding type for the receiver.

3! ATSs: tells the rModem to transmit the string  s!
4! ATP: tells the modem to transmit the canned data

2.5 UART Transmi tfer Controller

UART transmitter controller handles the transmission of data to the user through the
serial port. The data can be either received bits or status information. This block ensures
that the buffer in the UART driver does not overflow.

3 Reconfigurable Modem Hardware
The reconfigurable modem hardware has four major parts: power supply carrier board,
the DSP board, analog-digital interface, power amplifier, and transducer s!. In the
following we describe these hardware modules.

3.1 Power Supply Carrier Board
The first layer of the hardware boards is the power supply crier board. This board
functions as a base for a micro-line stack of DSP, analog-digital interface and the power
amplifier boards. It delivers power to the micro-line stack and provides additional
services such as a UART communications connector and a hard reset button,

3.2 DSP Board

The DSP platform is an of-the-shelf Orsys micro-line embedded development board. The
micro-line board provides a Texas Instruments TMS320C6713 DSP chip and a Xilinx
Virtex-II FPGA, This board provides an open micro-line bus interface for integrating
peripheral hardware directly with DSP or FPGA resources.

The TMS320C6713 is a 225 MHz floating-point DSP processor with a theoretical
inaximum performance of 1350 MFLOPS. We decided to utilize a floating-point
processor to minimize the time required to convert simulation software into real-time
code. The processing power of this DSP is enough to minimize the hand optimization
effort for rapid prototyping.

The price we pay for high performance with floating pomt functionality is high power
consumption as compared to the C5000 series low power DSP chips. As we intend to
employ the rModem as a research-based rapid prototyping environment, we decided to
choose ease of programming over low power consumption. We assume that these



modems will not be employed for extended periods without maintenance or will be
deployed within a system which does not have strict power consumption requirements for
its peripherals, such as an AUV.

The micro-line C6713 compact board also features 64 Mbyte on board SDRAM as
nonvolatile memory space together with a Resident Flash File system for easy software
downloading and handling. The Resident Flash File system enables us to store multiple
modem definitions in the on board memory and select the required definition at the boot
time. Therefore, we can test multiple communication algorithms within one deployment
without the need for multiple downloads.

Since rModem may be deployed in an observation station where space is limitted, we
paid special attention to the size of the system. The micro-line board dimensions are 120
x 67 mm �.72" x 2.64"!, The peripheral boards stack on the DSP board. The final size of
the system depends on the number of peripherals.

3.3 Analog-Digital Interface Board
The analog-digital interface board contains four analog-to-digital and digital-analog
 AD/DA! channels. By employing multiple input and output channels, we will be able to
develop and test multi-input-multi-output  MMO! modems.

Each channel on this board can sample at 250 kHz and has a built in anti-aliasing filter
with cut-off frequency at 100 kHz, However, we can program the board to provide us
with a lower sampling rate, by decimating the signals in the on board FPGA. We can
program the sampling rate of the A/D converter, the decimation rate, and the deciination
filter coefficients, The same coefficients are used to interpolate the signals going to the
D/A channels. The coefficients can be programmed during start up.

3.4 Power Amplifier Board
Power amplifier board will be placed on top of the analog-digital interface and drive the
acoustic transducers. This board will utilize high-efficiency linear amplifiers. The board
can be reconfigured for different transducers by changing a couple components without
changing the basic design.
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